

THE UNIVERSITY OF TEXAS

Making Cancer History®

Assessing the risk of CIED malfunction from radiation

Stephen F. Kry, PhD

AAPM annual meeting

July, 2017

Objectives

- What are the failure modes for CIEDs?
 - Electromagnetic Interference
 - Magnetic fields
 - Dose rate effects
 - High LET interference
 - Cumulative dose
- What is the clinical risk of each?
- How should this risk be assessed?

1. Electromagentic Interference

- EMI could affect signal of CIED
- Poorly investigated (effect not isolated)
 - Several reported events that are likely LET effects
- Effects are minimal and transient (only when field is on)
- Not generally something to worry about

2. Magnetic Fields

- Can have current induction, lead heating, mechanical movement, parameter reset, battery depletion, etc.
- CIED has often been considered a contraindication to MRI
- Lots of changes in the field right now
 - CIED developers are addressing the need to MRI patients
 - MR conditional devices on the market
 - i.e., MRI environment does not pose a known hazard
- Also there are numerous studies of CIED patients receiving scans
 - 0.5-1.5 T

2. Magnetic Fields

- MRI can be done safely for MR-conditional devices
 - 7 trials with ~1500 total patients: 1 serious adverse event
 - Pericarditis requiring lead repositioning
 - Occasional pacing capture threshold change (not statistically significant)
 - Some reports of warming and/or prickling sensation
- Even non-conditional devices show very few effects in clinical studies
 - Most studies (hundreds of patients): no effects
 - Occasional resets and transient effects
- Risk is low (don't exclude patient from consideration of MRI)
- Risk is not zero (protocols needed)
- Assessment is pretty easy is there a magnetic field?

3. Dose-rate effects

- Device can suffer interference or become confused by high frequency x-rays
- E.g., CT scan has a period of 2 cycles/s = 120 sig/min. Heart rate?
- Frequency in clinical practice:
 - Low, or at least low impact
- Grant et al (JAMA Oncology, 2015) found 3 noise-events in 249 course of RT
 - 1.2% risk per course
- Severity
 - Generally mild
 - Transient effects only relevant when radiation is on
 - Accidental discharge of a ICD would not be good or mild never reported

3. Dose-rate effects - assessment

- Assessment is hard we don't know what we're looking for!
- Unclear what the dose-rate versus response relationship looks like.
 - Is the risk higher with FFF beams vs normal beams (instantaneous dose rate)?
 - Is the risk higher with 600 MU/min vs 100 MU/min (dose per second)?
 - Is the risk higher with VMAT vs conventional therapy (dose per min)?
- Most experience is based on conventional therapy. Be aware that different dose/time structures may have different risks
- There is no evidence (currently) that the risk is different according to different clinical treatment regimens (not much data)
- Risks are small

4. Risk from high-LET particles

- High LET particles can flip bit status (0->1)
 - Neutrons (not photons or protons)
 - This might be an irrelevant change or a critical one....
- Studied in proton series (42 patients)
- High energy x-ray series (71 patients)

Original Investigation

Malfunctions of Implantable Cardiac Devices in Patients Radiotherapy-Induced Malfunction in Contemporary Receiving Proton Beam Therapy: Incidence and Predictors Cardiovascular Implantable Electronic Devices

Daniel R. Gomez, MD,* Falk Poenisch, PhD,[†] Chelsea C. Pinnix, MD, PhD,* Tommy Sheu, BA,[‡] Joe Y. Chang, MD, MS, PhD,* Nada Memon, MD,[§] Radhe Mohan, PhD,[†] Marc A. Rozner, MD, PhD,^{||,1} and Anne H. Dougherty, MD^{§,1}

Int J Radiation Oncol Biol Phys, Vol. 87, No. 3, pp. 570-575, 2013

Clinical Incidence and Predictors

Jonathan D. Grant, MD; Garrett L. Jensen, BS; Chad Tang, MD; Julianne M. Pollard, PhD; Stephen F. Kry, PhD; Sunil Krishnan, MD; Anne H. Dougherty, MD; Daniel R. Gomez, MD; Marc A. Rozner, PhD, MD

> JAMA Oncol. doi:10.1001/jamaoncol.2015.1787 Published online June 25, 2015.

4. Risk from high-LET particles

- Risk of upset per course of RT
 - -Proton series: 5/42 = **12% risk per course** (Gomez)
 - –High energy x-ray: 15/71 = 21% risk per course (Grant)
- Type of errors (of the 15 upsets from Grant)
 - -5 data loss
 - -8 parameter reset
 - -2 unrecoverable errors

4. Assessing high-LET risk

- Risk is stochastic
 - upset as likely on the first fraction as on the last
- Question is: how many neutrons are present?
- Neutron dosimetry is ugly
 - Don't measure anything
- Know when neutrons are present and that they are a bath

≤10 MV photons, electron = NO neutrons

>10 MV photons, proton therapy = neutrons

- It doesn't matter how far away the treatment field is

5. Risk from cumulative dose

- Degrading of CIED circuitry leading to degradation or loss of function
- TG-34 focused on this risk: 2 Gy limit

- Cumulative dose effects studied several times
 - Often mix cumulative dose and high energy x-rays.....
 - Hurkmans 2005, Hurkmans 2005, Uiterwaal 2006, Mollerus 2014
 - Just 6 MV beams
- Direct irradiation of CIEDs ex-vivo

5. Risk from cumulative dose

Results from the previous four studies

	Failed by 5 Gy	Failed by 50 Gy
ICPs	0/19 (0%)	2/19 (11%)
ICDs	3/30 (10%)	10/19 (53%)
Total	3/49 (6%)	12/38 (32%)

High doses often lead to device failure – relatively severe risk

5. Assessing cumulative dose risk General comments

- 1. Do it nearest to the treatment field, don't include leads
- 2. Do it early so you can incorporate into management
 - Estimate before first fraction
 - Calculation: TG-36/TG-158/TPS
 - Confirm on/by first fraction
 - Phantom or in vivo
- 3. How to assess depends on distance from the field

5. Assessing cumulative dose risk Within 3 cm of the treatment field

- Within 3 cm of the treatment field
 - (within the 5% isodose curve)
- Use the TPS calculated dose
 - Dose calculation won't be highly accurate because it will not capture the low-energy of the scattered radiation interacting with the high-Z of the CIED
 - Don't worry about this issue (e.g., by over-riding the HU of the device). Just calculate dose normally in the TPS to the CIED contour.
 - Can still over-ride e.g., missing tissue

5. Assessing cumulative dose risk Within 3 cm of the treatment field

- The TPS is only suitable for assessing dose to the device within 3 cm of the treatment field (above the 5% isodose line)
- Further out, the dose estimates are wrong, typically underestimating dose by 50%, with increasing error as the distance increases.
- Don't use the TPS beyond 3 cm/5% isodose.

5. Assessing cumulative dose risk at intermediate distances

- 3-10 cm from field edge
- Measure the dose to the device
- 1. Select an appropriate dosimeter, consider necessary corrections
- 2. Put bolus over detector

- Most measurement errors/shortcuts will lead to overestimate of dose
 - Acceptable as long as patient is placed in appropriate risk category

5.1 Detector choice and corrections

- Energy is much softer than in-field (300 keV vs. 1.5 MeV)
 Dosimeters will typically over-respond (higher Z than water)
- Ion chambers
 - Caution for microchambers with high-Z electrodes
 - 50% energy correction. Otherwise minimal issue
 - Caution for high-V for in vivo measurements
- TLD/OSLD
 - 10%/25% energy correction
 - TLD-100: sensitive to neutrons (erroneous result in 15/18 MV beam)
- Diodes
 - Energy correction depends on type of diode, but can be >70%

5.2 Bolus over detector

- There is elevated dose at the surface (by a factor of 2+)
- CIEDs are typically located
 1-3 cm below skin
- To get reasonable dose measurement, cover device in bolus (~1cm)

Kry et al, Med Phys, 2006

5. Assessing cumulative dose risk >10 cm from the treatment field

• Beyond 10 cm from the field edge:

- Dose almost certain to be less than 2 Gy
 - Use clinical judgement. If there are vertex fields pointed straight at the device it may still warrant a measurement.

- Don't generally need to worry about the dose at this distance
- No further assessment necessary

Summary

- There are several possible failure modes
- The biggest ones to worry about are
- High LET situations
 - Clear high risk of device upset
- Cumulative Dose
 - Clear high risk of device failure
- Guidelines in TG-203 for assessing the risk for each of these